Continuing Ed workshop by Richard Skeirik, PE

CSTR Design Exercise

The reaction is a simple irreversible isomerization: A -> B The reaction rate is $r_a =- k_f A$. $k_f = 5 \text{ min}^{-1}$ An upstream unit dictates a feed concentration of 2.5 mol/ m³ The business leaders have given us a design objective for a reactor to create 8 mol/min of B

The CSTR balance (you derived this, remember?) is

$$qA_{in} - qA_{out} - Vk_fA_{out} = 0$$

Approach 1: Set Conversion

Name	Value	Units
Kf	5	min ⁻¹
q		m ³ /min
Ain	2.5	mol/ m ³
Aout		mol/ m ³
q∙Bout	8.0	mol/min
V		m ³

Here is an insight that makes this problem easier. Since A simply goes to B, you form one mole of B for each mol of A that reacts. So the amount of B exiting (your design variable) is simply equal to the amount of A reacting. Now, which term in the balance is that? Write this equivalence:

[design spec] = [amount of a reacting]

We are already close to being finished. Only V and Aout are unknown. One equation, two unknowns. The choice is ours as designer, so let's **set a conversion** of A. Let's say 80% of A is reacted.

 $A_{out} = 0.2 * A_{in}$ Compute that and put it in the table. Now we have one equation to give V. What is V?

This is your reactor design 80% conversion V = _____ m³

> © 2018 Richard Skeirik, All Rights Reserved For personal use by workshop participants only For other permissions, contact me: richardskeirik@richardskeirik.com

Kinetics & Reactor Design 2: Liquid Reactors

Continuing Ed workshop by Richard Skeirik, PE

What is q? q [Ain – Aout] = VkfAout = 8 mol/min.

Add that to your table.

Approach 2: Set V

What if you already have a 5 m^3 reactor? Let's run at the same q, Ain as above.

Name	Value	Units
Kf	5	min⁻¹
q	4.0	m³/min
Ain	2.5	mol/ m ³
`Aout		mol/ m ³
q∙Bout	8.0	mol/min
V	5	m ³

$$qA_{in} - qA_{out} - Vk_fA_{out} = 0$$

Again, the production spec is the rate of reaction of A: [amount of A reacting] = [design spec of 8 mol/min]

One equation, one unknown. Solve for Aout. Put it in your table

High Conversion

Let's go back to the first case. Instead of 80% conversion, let's design for 99.99% conversion. What reactor volume do you need?

Why is the reactor so big?